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SOME STETDl3S ON THE N0mNEA.R DYNAMIC RESPONSE 

OF SHELL-TYPE STRUCTURES 

By David A. Evensen and Robert E.  Fulton 

NASA Langley Research Center 

INTRODUCTION 

Recent aerospace applications involving thin-walled structures have neces- 

s i t a t ed  studies of the  nonlinear vibration and response of t h in  shel ls .  The 

resu l t s  of some current research on nonlinear dynamics of th in  she l l s  are  sum- 

marized i n  the  present paper. 

involve geometric nonlinearit ies and t h i n  shells of revolution. 

Two related problem areas are  outlined; both 

The first problem considered i s  the forced, nonlinear f lexural  vibrations 

. of thin-walled circular  cylinders. Approximate solutions a re  obtained which 

show tha t  vibrations involving a single bending mode or two coupled bending 

modes can occur. The analysis exhibits several features tha t  a re  character- 

i s t i c  of nonlinear f lexural  vibrations of axisymmetric e l a s t i c  structures i n  

general. 

The second problem deals with the dynamic axisymmetric snap-through buckling 

of shallow conical and spherical shel ls  subjected t o  uniformly dis t r ibuted impul- 

sive pressures. Approximate buckling pressures a re  obtained fo r  a variety of 

boundary conditions for  both types of shells and comparisons a re  made between 

conical and spherical caps having s i m i l a r  geometries. 

SYMBOLS 



. 
I 

average values (over one period) of t he  vibration amplitudes 
L 

(see eqs. (7) and ( 9 ) )  

b 

D 

I 

I external radius of conical s h e l l  ( f i g .  7a) 

m3 
12(1  - p2) 

bending s t i f fness ,  

Young's modulus 

stress function 

nondimensional amplitude of t h e  applied loading 

s h e l l  thiclmess i 
center r i s e  of t h e  s h e l l  ( f i g s .  7a and 7b) I 

P b 4 3 ( 1  - p2) 

Eph?H2 
i n i t i a l  impulse parameter, 

i n i t i a l  impulse per un i t  area 

radial and circumferential changes i n  curvatures 

length of the  cylinder 

number of a x i a l  half-waves and circumferential waves, respectively ~ 

radial loading applied t o  the  surface of t h e  cylinder 

horizontal  coordinate of conical s h e l l  ( f i g .  7a) 

radius of the s h e l l  

time 

displacements of a point on the  median surface of t he  s h e l l  (see 

f ig s .  1, 7a, and 7b) 

displacement constant, see equation (14) 

she l l  coordinates (see f ig .  1) 

nondimensional s t r a i n  energy of t he  she l l  

colati tude coordinate f o r  spherical  s h e l l  ( f i g .  7b) 
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'u 
B 

h 

CI 

5 

half opening 

nonlinearity 

angle f o r  spherical she l l  ( f ig .  i'b) 

parameters 

r ad ia l  and circumferential extensional s t r a ins  

nondimensional generalized coordinates associated with A, and 

G, respectively 

1/4 
s h e l l  parameter, 

Poisson's r a t i o  

gR/n - aspect r a t i o  of the vibration mode, 
L/m 

mass density 

rad ia l  and circumferential stresses 

nondimensional t i m e ,  %t 

vibration frequency 

calculated l inear  vibration frequency defined by 

experimental l i nea r  vibration frequency 

0) nondimensional frequency, - 
'us 

biharmonic operator, 
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NONLINEAR FKZXJRAL VIBRATIONS OF THIN-WALLED CIRCULAR CYLINDERS r i  

The nonlinear f lexura l  vibrations of thin-walled circular  cylinders are 

analyzed by assuming two vibration modes and applying Galerldn's procedure on 

the  equations of motion. The assumed shape fo r  t he  r ad ia l  deflection w and 
I 

the  re lated stress function F a re  chosen such tha t  they approximately sa t i s fy  

the boundary conditions of a cylinder having "freely-supported" ends. In-plane 

i n e r t i a  terms a re  neglected, and a l inear  s t ress -s t ra in  law i s  assumed. The 

I 
I 
I 

nonlinearit ies i n  the  problem a r i s e  from including nonlinear rotat ion terms i n  
~ 

the  strain-displacement re la t ions.  

Governing Equations 

Using the  well-known approximations of Donnell's shallow-shell theory a s  

exemplified i n  reference 3 ,  the  equations of motion of a thin-walled c i rcu lar  

cylinder can be combined t o  give I 

and 

L J 

where w i s  the r ad ia l  deflection and F i s  the  usual stress function. (The 

coordinate system and she l l  geometry are shown i n  f i g .  1.) 

Approximate solutions t o  equations (1) and ( 2 )  were obtained by using the  

following two-mode approximation fo r  t h e  radial deflection: 

4 
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R L R L Here cos - s i n  - and s in  - s in  - are the l inear  vibration modes of 

the cylinder, and equation ( 3 )  is  limited t o  n 2 2 since only f lexural  motions 

a re  being considered. "he bracketed term i n  ( 3 )  is  included t o  sa t i s fy  the 

periodic continuity condition on the circumferential displacement v. 

Substitution of equation (3)  i n t o  the compatibility equation (2) allowed 

the l a t t e r  t o  be solved for  F. The expressions f o r  w and F were then 

examined and found t o  satisf 'y the folloxing boundary conditions: 

( a )  The displacements u, v, and w, and t h e i r  derivatives sa t i s fy  perio- 

d ic i ty  conditions of the form 

(b) The r ad ia l  displacement w goes t o  zero a t  the ends of the cylinder, 

i . e . ,  a t  x = 0 and x = L. 

( c )  To a first approximation, the in-plane stress-resultant Nx, the  

moment-resultant &, and the tangential  displacement v a l l  vanish a t  x = 0 

and X = L. In other words, the coefficients of the l i nea r  terms i n  the expres- 

sions f o r  N,, s, and v go t o  zero a t  the ends of the  cylinder, but the 

nonlinear terms involving An , An%, and &2 do not vanish there. These 

end conditions are  similar t o  the boundary conditions for  a cylinder which has 

2 

freely-supported ends. 

The applied loading, q(x,y,t) ,  was chosen such tha t  only one mode i s  

d i rec t ly  excited: 

5 



equations a re  

J 

(4) 

Finally,  t he  expressions fo r  w,  F, and q were subst i tuted in to  equa,-on (1) 

and a Gslerkin procedure was used t o  obtain two nonlinear d i f f e ren t i a l  equations 

fo r  t h e  modal amplitudes An and &. I n  nondimensional form, these coupled 

- E 7 C C ( i c 2  + L2) 

and 

- +  5 ,  + 5 ,  
dT2 

2 
- €75,(5,2 + 5.2) + E 2 8 5 , ( 5 , 2  + I.:) = O 

where the  nondimensional variables a re  

An 
sc  = 5 

t h e  nondimensional frequency i s  

and the nonlinearity parameters are 

r 

6 



and 

6 3E 
16 
- 

L 

I n  these expressions, the  parameter E represents the aspect r a t i o  of the 

vibration mode: 

xR/n - Circumferential wavelength - 
L/m Axial wavelength 5 =  

Examination of the expressions fo r  7 ,  6, E ,  and E i n  equations ( 5 )  

and (6) leads t o  the following observations: 

( a )  A s  the length of the cylinder tends t o  inf in i ty ,  the parameters 5 ,  

a l l  tend t o  zero, and equations (3)  approach the previous r e su l t s  7, and 

f o r  rings (ref.  1). 

6 

(b)  Each of the nonlinear terms i n  equation ( 5 )  i s  multiplied by E; con- 

sequently, 

Linear vibrations occur for  E = 0, and increasing E makes the vibrations 

increasingly nonlinear. 

E can be viewed as  t h e  basic nonlinearity parameter i n  the problem. 

Approximate Solutions by the Method of Averaging 

Equations ( 5 )  can be solved approximately by use of the method of Krylov- 

Bogoliubov, often ca l led  "The Method of Averaging." Such solutions will be 

7 
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presented fo r  vibrations involving (a)  only the  driven mode and ( b )  both the  

driven mode and i t s  companion mode. I n  the discussion which follows, t he  t e r m  

"driven mode" r e l a t e s  t o  cC('r) and cos n y / R  s in  mstx/L; the term "companion 

mode" refers  t o  c s ( ~ )  and s in  ny/R s i n  mx/L.  

Response of a single bending mode.- Since the  applied loading (eq. ( 4 ) )  

d i rec t ly  drives only one mode of the  cylinder, a possible solution t o  equa- 

t ions  ( 5 )  involves the response of only the driven mode. Application of the  

method of averaging fo r  t h i s  case gives 

C c ( T )  = C O S  RT 

csW = 0 

where can be computed from 

( 7 )  

Equation (8) can be used t o  compute the  var ia t ion of a with R f o r  given 

values of E ,  y ,  6, and b. When b i s  nonzero, the forced vibration 

response of a single mode i s  obtained; t he  case of f ree  nonlinear vibrat ions 

r e su l t s  when i s  put equal t o  zero. 

S t ab i l i t y  of t he  one-mode response.- The s t a b i l i t y  of t h e  preceding solu- 

t i on  was investigated by perturbing CC(7) and cS(.). A study of the  

resul t ing Mathieu-Hi11 equations indicated that within terms of order e2 

(1) Perturbations of are unstable within the  area bounded by 

-2 
1 - - (Y 9cA2 + i) < R <  1 - - 

8 8 

8 
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(2) Perturbations of s s  are  unstable within the region 

( 3 )  Both types of perturbations are  unstable i n  narrow regions near 

R = i/2, 1/3, . . . 
The first in s t ab i l i t y  region coincides with the locus of ve r t i ca l  tangents 

t o  the  response curves and indicates the well-horn jump phenomena. The nar- 

row areas near R = 1/2, 1/3, . . . , denote possible ultraharmonic responses. 

The remaining region, (2), indicates the area i n  which the companion mode is  

parametrically unstable due t o  nonlinear coupling with the  driven mode. To 

obtain adequate solutions i n  region (2), it i s  necessary t o  consider motions 

where both modes vibrate.  

Response of the coupled bending modes.- When { s ( ~ )  and c C ( ~ )  both 

osc i l la te ,  the method of averaging gives the approximate solution 

CC(T) = COS QT 

} - 
C S ( ~ )  = B s i n  RT 

- 
where A and 5 sa t i s fy  the following equations: 

( 9 )  

If 5 = 0, equations (9) and (10) revert t o  the single mode case discussed 

previously. When i s  not zero, the variation of x and with R can be 

9 
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computed by solving equations ( loa)  and (lob) simultaneously, for given values 

of E ,  y ,  6, and h. 

DISCUSSION OF THE CYLINDER F@XULTS 

Figure 2 i l l u s t r a t e s  t he  response curves for  both free and forced vibra- 

t ions  of a s ingle  bending mode. 

vibrations and w a s  obtained from equation (8) with 

The forced vibration response i s  given by the  so l id  l ines ,  which were computed 

from equation (8) f o r  

demonstrate a s l i gh t  nonlinearity of t he  softening type. The value of E used 

i n  these calculations w a s  0.01, and the  values of y and 6 which were used 

correspond t o  5 = 0.1, E = 0.01, and p = 0.3. These values of 5 and E 

a re  representative of a cylinder t ha t  i s  vibrat ing i n  the  m = 1, n = 10 mode 

and which has a length/radius of fi and a radius/thickness r a t i o  of 1000. The 

s l igh t  nonlinearity shown i n  f igure 2 i s  typ ica l  of cylinders t h a t  a r e  re la -  

t i v e l y  long and thin-walled. For other modes and geometries, however, the  

nonlinearity can be much more pronounced. 

The dashed curve represents f r ee  nonlinear 

put equal t o  zero. 

h = 0.1. Both the f ree  and forced response curves 

This r e su l t  i s  indicated i n  figures 3 and 4, which show how variat ions i n  

the parameters E and 5 af fec t  t he  nonlinearity of t he  vibrations.  Fig- 

ure 3 shows several  f ree  vibration response curves computed from equation (8) 

fo r  h = 0 and for f ive  values of E ranging from 0 t o  1.0. The so l id  

l i n e s  were calculated fo r  values of 7 and 6 corresponding t o  an aspect 

r a t i o  Both s e t s  of curves i n  

figure 3 demonstrate t h a t  the  strength of t h e  nonl inear i ty  i s  determined p r i -  

marily by the parameter E = t:p. - 
5 = 1/2, and the  dashed curves are for 5. = 2 .  

The nonl inear i ty  i s  generally small f o r  

10 
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vibrations involving very t h i n  cylinders and/or low circumferential mode num- 

bers, n. Conversely, strong nonlinearit ies occur f o r  the case of thick cylin- 

ders and/or high circumferential mode numbers. 

The character of the  nonlinearity (i .e., whether it is  softening or  

hardening) depends primarily on 

mode. 

t i on  response curves computed from equation (8) f o r  values of 

0.10 t o  4.0. 

w e r e  calculated fo r  constant values of the  nonlinearity parameter 

Poisson's r a t i o  p = 0.3. 

are generally of the  softening type when the aspect r a t i o  

unity. 

nonlinearity of the hardening type. 

5 ,  which i s  the aspect r a t i o  of the vibration 

This result i s  i l l u s t r a t e d  i n  figure 4, which shows several  free vibra- 

ranging from E 

The so l id  l i nes  show the resu l t s  of the present analysis; they 

E = 1.0 and 

The present calculations show tha t  the vibrations 

5 i s  less than 

For larger  values of the aspect ra t io ,  the  so l id  curves indicate a 

For comparison purposes, the dashed curves i n  figure 4 i l l u s t r a t e  Chu's 

r e su l t s  ( re f .  4), which correspond t o  E = 1.0 and p = 0.318. Chu points 

out t h a t  his r e su l t s  possess a symmetric dependence on the aspect r a t i o  param- 

e t e r ,  whereby his curves fo r  E = 1/2, 1/4, 1/8 . . . coincide with those fo r  

5 = 2, 4, 8 . . ., respectively. 

r a t i o  seems t o  confl ic t  with the  basic geometric nonsymmetry of the problem - 

i.e., the  surface of the cylinder i s  curved i n  the  circumferential direction 

but not i n  t h e  ax ia l  direction. 

Such a symmetric dependence on the aspect 

With regard t o  t h i s  point,  it w i l l  be noted that the present results do 

not exhibit  a symmetric dependence on the aspect r a t i o  and do not agree with 

the  calculations of ref. 4. 

(refs. 3 and 4) do not agree 

do not s a t i s f y  the  necessary 

The major reason tha t  the previous studies 

with the present work appears t o  be tha t  the former 

geometric continuity constraint on the 

11 



4 circumferential displacement, v. (The available experiments tend t o  favor 

the  present analysis; they w i l l  be discussed shortly.)  

The previous studies did not consider coupled mode responses involving 

both a driven mode and i t s  companion. The so l id  l i nes  shown i n  f igure  5 

i l l u s t r a t e  such a coupled mode response fo r  a typ ica l  cylinder. The response 

curves were calculated from equations ( loa)  and ( lob)  with 

G,, = 0.1, and y and 6 corresponding t o  5 = 0.1. It i s  of i n t e r e s t  t o  

note tha t  t h e  so l id  response curves a re  analogous t o  the r e su l t s  obtained f o r  

nonlinear vibrations of rings and f o r  nonlinear vibration absorbers ( r e f s  . 1 

E = 0.01, 

and 5 4  
- 

Along the a-b portion of the so l id  curves ( f i g .  5 ) ,  B i s  zero and only 

the  driven mode responds. 

mode and its companion respond with comparable amplitudes; i n  t h i s  case, the 

response curves are  adjacent t o  the dashed l i nes ,  o-n. The response curves 

exhibit  ve r t i ca l  tangents a t  points  c ,  f ,  g, and h, and the  segments c-d and 

f-g a re  suspected of being unstable. Along g-h-i-j,  the  response of t he  com- 

panion mode i s  much greater  than tha t  of the driven mode. 

analogous t o  the vibration absorber response i n  which the  driven m a s s  experi- 

ences very l i t t l e  motion while the  absorber m a s s  v ibrates  with large displace- 

ments. For r ing  vibrations,  the segment corresponding t o  g-h-i-j was found t o  

be unstable, and a s i m i l a r  r e s u l t  appears t r u e  fo r  cylinders.  

point g, the vibrations apparently rever t  t o  t h e  one mode case, with 5 = 0 

and 

region, i n  which both solutions (7 )  and ( 9 )  a r e  unstable. 

i n  the  response have been observed i n  r e l a t ed  problems, and analog computer 

Along the  segments b-c-d and e-f-g, both the  driven 

This s i tua t ion  i s  

To the  l e f t  of 

given by equation (8) .  For some cylinders,  t h i s  may r e s u l t  i n  a "gap" 

Such unstable gaps 

12 
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studies indicate that nonsteady vibrations with rapidly changing amplitudes 

occur i n  these regions. (See refs. 1, 6, and 7 i n  th i s  regard.) 

Experimental results f o r  the nonlinear f lexural  vibrations of thin-walled 

circular  cylinders are  ra ther  scarce. 

Olson (ref. 2) who obtained nonlinear forced response curves fo r  the  vibration 

of a t h in  cylindrical  shell. 

and dashed l ines  i n  figure 6. 

response curve calculated from equation (8) f o r  

E ,  y ,  and 6 that correspond t o  Olson's experiment. Both theory and experi- 

ment indicate a nonlinearity of the softening type fo r  this case, whereas the 

previous theore t ica l  r e su l t s  (refs. 3 and 4) indicate a hardening type of non- 

l i nea r i ty  f o r  a l l  cylinders. 

good, despite the  f a c t  t h a t  the theory i s  for  freely-supported ends whereas the  

tes t  cylinders had end clamping. It is  of i n t e re s t  t o  note tha t  Olson a lso  

detected nonsteady vibrations i n  h i s  experiments; these vibrations may have 

been due t o  coupled mode responses. 

Among the  best  available data i s  that of 

Olson's experimental data is shown by the c i r c l e s  

The so l id  l ine  i n  figure 6 i s  the free vibration 

= 0 and with values of 

The agreement shown i n  figure 6 i s  reasonably 

Nonlinear' Vibrations of Related Axisymmetric Systems 

The results f o r  t h i n  cyl indrical  shel ls  a re  qual i ta t ively similar t o  those 

f o r  rings; i n  both cases, the  companion mode can be parametrically excited and 

par t ic ipa te  i n  the motion. 

combine t o  produce a circumferentially t ravel l ing wave; responses of this type 

have been detected f o r  rings (ref. l), cylindrical  she l l s  (ref. 8), conical 

shells (ref. 9 )  , and c i rcu lar  p la tes  ( re f .  10). 

that similar motions w i l l  occur for  the nonlinear vibration of other f lexible  

axisymmetric bodies. 

I n  some cases, t h e  driven mode and i ts  companion 

It seems reasonable t o  expect 

This suggests the possibi l i ty  of formulating a general 



- :  theory for  the nonlinear vibration of axisymmetric systems, and the present 

work i s  being extended along these l ines .  

DYNAMIC SNAP-THROUGH BUCKLING OF ELASTIC SHALLOW CONICAL 

AND SPHERICAL CAPS 

A second class  of nonlinear problems which has been studied involves the 

axi symmetric snap-through buckling of shallow conical and spherical caps sub- 

jected t o  uniformly dis t r ibuted 2.mpulsive loads. 

assumed that  the duration of the impulse i s  short with respect t o  the period 

of the fundamental flexuralmode, but long with respect t o  the f i r s t  exten- 

sional mode of the she l l .  The she l l  i s  assumed t o  behave as a single-degree- 

of-freedom system during i t s  f i rs t  cycle of osc i l la t ion  and inplane i n e r t i a  i s  

For t h i s  problem, it i s  

neglected. 

The method of a t tack i s  t o  investigate the  behavior of t he  s h e l l  a t  the 

time when i ts  amplitude reaches a maximum. 

single-degree-of-freedom system, the in te rna l  s t r a in  energy a t  maximum dis- 

placement i s  equal t o  the i n i t i a l  kinet ic  energy of the she l l .  The i n i t i a l  

kinetic energy can i n  turn be related t o  the  applied impulse by considering 

conservation of momentum. 

Treating the she l l  as an undamped 

Thus, the i n i t i a l  impulse can be obtained as  a function of the maximum 

displacement. The maximum displacement w will increase with increase i n  

i n i t i a l  impulse 

buckling. 

mum displacement with respect t o  a change i n  i n i t i a l  impulse. 

for  snap-through i s  therefore given by 

I u n t i l  the impulse i s  suf f ic ien t  t o  cause snap-through 

A t  the snap-through impulse there  will be a sudden increase i n  maxi- 

The condition 

a W = m  o r  - = o  dI 
dI dw 

14 
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Conical Shell  

The problem t o  be considered first i s  tha t  of a shallow conical s h e l l  

which deforms axisymuetrically. 

fur ther  de t a i l s  may be obtained in reference 11. 

external radius b, and thiclmess h. The radius t o  a point on the middle sur- 

face i s  r (see f ig .  7a). The she l l  is considered shallow i n  the sense that 

the rise angle of the  cone and the  sine of the  rise angle can be replaced by 

H/b. 

The resul ts  wlll be summarized b r i e f ly  and 

The cone has a height H, an 

The s t r a i n  energy of the she l l  can be expressed a s  

b 
v =  Jb + c22 + & ~ ~ ~ ~ ) r d r  + 2 ( K i 2  + Kz2 + aKlK2)rdr 

2 (1  - p2)H2 0 A4 0 

(u) 
where the  fac tor  

sional. Here €1, ~2 and K1,  K2 are ,  respectively, the extensional s t ra ins  

and curvatures i n  the r ad ia l  and circumferential directions. Young's modulus 

i s  denoted by E and Poisson's r a t i o  by p; h i s  the she l l  parameter, which 

i s  defined by 

2nH2Eh has been used t o  render the s t r a in  energy nondimen- 

A2 = qm- h 

The nonlinear s t r a ins  and curvatures given i n  equation (11) a r e  re la ted  t o  the 

displacements by 

U E2 = - r 
K2 = - -  E= 



I 

where u and w a re  the  m a x i m u m  deflections i n  the  horizontal  ( r )  and v e r t i c a l  

( z )  directions,  respectively. 

Solutions f o r  Various Boundary Conditions 

Consider f irst  the  solution fo r  t he  conical cap which has boundary condi- 

such t h a t  the  displacement i s  res t ra ined i n  the r ad ia l  direc- 

The s h e l l  can be e i the r  clamped or simply-supported with 

t ions  a t  r = b 

t i o n  (i .e., 

respect t o  the  w displacement a t  t he  boundary. 

u = 0 ) .  

The maximum deflection can be approximated by 

w = woH(l - E)(. b2 - C 5) b2 

where wo and C a re  constants. The boundary conditions a t  r = b can be 

sa t i s f i ed  by a proper choice of C ,  t h a t  is, 

- _  dw - 0, C = l  dr 
Clamped : 

1 + P  

5 + P  
Simply supported: Mi = -D(K1 + pK2) = 0, C = - 

The shape given by equation (14)  corresponds t o  the  deflection of a c i r cu la r  

p l a t e  subjected t o  a uniform lateral  load and supported a t  t h e  boundary. 

Following the  procedure just  outl ined leads t o  an equation such as t h e  

following one which holds f o r  t h e  clamped res t ra inzd  boundary conditions 

I 

16 
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where 

- 
I i s  the i n i t i a l  uniformly distributed impulse per unit  area, p i s  the mass 

density of the shell ,  and value of p = 0.3 has been used. 

The condition for  snap-through i s  dI/dwo = 0 which gives the c r i t i c a l  

deflection fo r  the clamped case as 

w0 = 1.1823 - 92 - 5926 

A4 

Note tha t  a t  certain values of h t h e  amplitude wo becomes imaginary; 

a t  these points there i s  no r ea l  wo 

t ion.  The physical interpretation of imaginary values of wo i s  that  the 

she l l  does not exhibit a snapping phenomenon and instead the motion i s  smooth 

and oscillatory. The minimum values for  A f o r t h e  clamped case corresponding 

t o  real wo i s  kn = 5.0. Thus, for  example, in  the case of a cone with a 

clamped restrained boundary, snap-through buckling does not occur unless 

exceeds 5.0 which happens when the rise of the cone 

corresponding t o  the snap-through condi- 

A 

H exceeds 3.78h. 

A plot of the impulse required for snap-through as  a function of the she l l  

parameter A is  presented i n  figure 8. These curves are obtained from equa- 

t ion  (15) taking account of equation (17). Similar calculations were carried 

out for  a l l  combinations of simply-supported or clamped and restrained (i .e., 

rad ia l  displacement 

ary conditions. 

u = 0) o r  unrestrained (i.e., radial  stress a1 = 0) bound- 

These are also given i n  figure 8. 

A study of the magnitude of c r i t i c a l  deflection occurring a t  snap-through 

indicates that it is  of the order of the  r i s e  of the cone. 

A = 6.0, 

For example, when 

2 = 0.902 H 
for the clamped restrained case. 



f 
Spherical Cap Results 

Results were also obtained fo r  the snap-through buckling of a spherical 

cap having the same boundary conditions and loading a s  the cone. 

a t e  strain-displacement re la t ions were taken a s  

The appropri- 

\ 

E2 = +(E - .) 

Here a i s  the opening angle variable and R i s  the radius of the sphere 

( f ig .  7b). The quantit ies u and w a r e  the tangent ia l  and normal displace- 

ments of the  she l l .  

The displacement w i s  taken i n  the same form a s  equation (14) and the 

procedure for  the spherical cap i s  d i rec t ly  analogous t o  that fo r  the conical 

cap. 

parameter h 

of the cone, i . e . ,  simply-supported and clamped, restrained and unrestrained. 

The resu l t s  for  the clamped restrained spherical  cap agree ident ica l ly  with 

those given i n  reference 12. 

A plot of the impulse required for snap-through as  a function of she l l  

i s  given i n  figure 9 f o r  boundary conditions comparable t o  those 

Discussion of Results 

It i s  interest ing t o  note i n  figure 8 tha t  fo r  re la t ive ly  large values of 

h the strength of the simply-supported restrained conical s h e l l  i s  greater 

18 
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than the comparable fixed case. On the  other hand fo r  small values of A where 

the rise of the cone i s  quite small, the reverse i s  t rue.  

The first ef fec t  has been noted previously by Humphreys and Bodner 

(ref.  E) f o r  dynamic buckling of a long cylindrical  panel. They found t h a t  

f o r  a l l  ranges of the curvature parameter the simply-supported panel exhibited 

a greater resistance t o  snap-through than did clamped panels. 

The r e su l t s  f o r  the spherical cap i n  figure 9 follow the same trend with 

the simply-supported s h e l l  always being stronger with respect t o  dyna.mic 

buckling than the clamped shell. These results emphasize the  importance of 

boundary conditions i n  assessing the  aynamic strength of this class  of shel ls .  

It i s  a l so  of i n t e re s t  t o  compare the behavior of a shallow conical she l l  

with that of a shallow spherical s h e l l  of comparable geometry and boundary con- 

di t ions.  Since a shallow sphere cannot be compared direct ly  with a shallow 

cone, two comparisons were made, first with equal rises and the second wi th  

equal edge slopes. Both resu l t s  a re  plotted i n  figure 10 f o r  the restrained 

boundary conditions where the spherical  cap parameters have been used as  a 

basis  f o r  the plots .  In  general, figure 10 shows t h a t  f o r  a conical or spheri- 

c a l  she l l  of the  same r i s e  H, the  stronger structure t o  r e s i s t  dynamic buckling 

i s  the sphere. Figure 10 a l so  indicates tha t  i f  the  cone and sphere have the 

same slope a t  the  boundary, the sphere i s  not as strong a s  the  cone. The same 

qual i ta t ive  r e su l t s  were a l so  found t o  hold f o r  the  unrestrained cases. This 

suggests that a shallow conical cap with a dynamic buckling impulse equivalent 

t o  that of a spherical  cap has a height larger  than the  sphere. 

A f ina l  comment should be made with respect t o  the accuracy of the present 

The two major sources of error i n  the  analysis l i e  i n  the assumption analysis.  

that the  s h e l l  behaves as  a single-degree-of-freedom system and the requirement 



# t h a t  the s h e l l  deform axisymmetrically. 

important with increasing she l l  r i s e .  

for  the axisymmetric dynamic snap-through buckling of a clamped spherical cap 

using five degrees of freedom. 

l ine .  

up t o  A of about 7. Some disagreement between the present resu l t s  and those 

of reference 14 occurs fo r  the cutoff point; however, t h i s  m y  be a t t r ibu ted  

t o  the d i f f icu l ty  i n  defining a f i n i t e  cutoff point i n  the method used by 

reference 14. 

Both of these effects  become more 

References 13 and 14 present resu l t s  

The r e su l t s  are  shown i n  figure 9 as  the dotted 

In general good correlation i s  obtained for  the single degree of freedom 

Results for  the axisymmetric s t a t i c  buckling of a clamped spherical cap 

are known t o  be adequate up t o  of about 5.5 with nonsymmetric e f fec ts  pre- 

dominating f o r  larger  values of A. Since the dynamic snap-through requires a 

cer ta in  amount of time to  occur, it seems reasonable t o  expect t ha t  axisym- 

metric behavior will hold i n  the dynamic case up t o  a higher 

snap-through. 

inadequate for  h beyond about nine fo r  conical she l l s  and fo r  A beyond seven 

fo r  spherical she l l s .  

A 

h than fo r  s t a t i c  

I n  view of these e f fec ts  the r e su l t s  given herein a re  f e l t  t o  be 

CONCLUDING REWRJSS 

A solution has been given for  the nonlinear f lexura l  vibrations of a thin-  

It walled circular cylinder subjected t o  harmonic excitation of a single mode. 

was found that  fo r  cer ta in  frequencies of the driving force, only the driven 

mode responded. 

excited due t o  nonlinear parametric coupling between the modes. 

indicate that the nonlinearity f o r  a cy l indr ica l  s h e l l  can be e i ther  of the 

softening or  hardening type depending on the  aspect r a t i o  of the vibration mode. 

For other frequencies, however, the companion mode a l so  became 

Results given 

20 
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This conclusion differs  from the results of Chu which indicated that the non- 

l inear i ty  was always of the hardening type. 

agrees reasonably w e l l  with the analysis presented here. 

given which re la tes  the present study t o  the nonlinear vibrations of other 

&symmetric systems. 

The available experimental data 

A discussion i s  also 

Results are also given fo r  the  snap-through buckling of s h a l l o w  conical 

and spherical caps subjected t o  a uniformly distributed idealized impulse. 

Solutions are given fo r  a variety of boundary conditions fo r  both types of 

shel ls  and several comparisons are made between the resul ts .  

shows tha t  for  conical caps a simply-supported she l l  can r e s i s t  a larger impulse 

than a clamped cone. 

One comparison 

Another comparison between spherical and conical caps 

having the same height indicates that the sphere can r e s i s t  a larger impulse 

than the cone before buckling. 
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